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Abstract
In this paper, we consider the problem of inelastic electron transport in
molecular systems in which both electronic and vibrational degrees of freedom
are considered on the quantum level. The electronic transport properties of
the corresponding molecular nanojunctions are obtained by means of a non-
perturbative Landauer-like multi-channel inelastic scattering technique. The
connections between this approach and other Green’s function techniques that
are useful in particular cases are studied in detail. The validity of the wide-band
approximation, the effects of the lead self-energy and the dynamical polaron
shift are also studied for a wide range of parameters. As a practical application
of the method, we consider the effects of the temperature on the conductance
properties of molecular breakjunctions in relation to recent experiments.

1. Introduction

The electronic current-carrying ability of molecules is fundamental and important to a
wide range of applications covering energy and information transfer to mono-molecular
electronics [1–3]. It is now well established that the transport properties of single (or
a few) molecules connected to external electrodes can be measured for a broad range of
temperatures [1–3]. The transport properties have been measured for different kinds of
molecules: linear organic conjugated molecules [4–8], carbon nanotubes [4, 9, 10], molecular
complexes including metallic ions [11, 12], proteins and DNA-like sequences [13–15]. Very
recently, the transport through single and substantially long (�100 Å) organic conjugated
polymers has been measured at room temperature [16]. In contrast to conduction through
macroscopic systems, new features appear in transport through molecules because of the
different length and energy scales involved. It is known that the local interactions (interaction
between electrons and/or interaction between electrons and atomic vibrations) play an
important role in the transport properties [1–3]. The effects of these interactions are more
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pronounced in nanoscale systems because the electronic probability density is concentrated in
a smaller region of space, where normal screening mechanisms are modified and become less
effective.

The effects of the interaction between electrons and molecular vibrations have been
observed in recent experiments performed on molecular junctions [17–24]. On one hand,
inelastic electron tunnelling spectroscopy (IETS) provides information about the selective
excitation of specific vibration modes of the molecule itself or of the molecule/electrode
interface as the electron is injected at a given energy (applied bias). IETS spectra have been
measured for small molecules adsorbed on surfaces [17, 18], molecular-scale transistors [19],
molecular nanojunctions made of alkyl or π -conjugated molecular wires [20], alkanedithiol
monolayers [21] and dithiol benzene-based organic molecules taken as individual entities or
embedded in a self-assembled monolayer [23]. On the other hand, the coupling between
electron and molecular vibrations plays an important role in the transport properties of
long conjugated molecules (conducting polymers) in which the transport is mediated via the
propagation of complex objects such as polarons or solitons [24, 25].

There have been many theoretical investigations focusing on the effects of electron–
vibration (or electron–phonon, e–ph) coupling in molecular and atomic scale wires. As
far as the electronic transport properties are concerned, different approaches and different
levels of approximations have been considered. Perturbation theory for the electron–vibration
interaction has been used to interpret IETS spectra for model systems [26] and more
realistic systems including small molecules on surfaces [27–29], atomic wires [30–32] and
molecular wires [33–35]. Going beyond perturbative approximations, the effects of the e–
ph coupling have been considered using scattering theory and conventional Green’s function
approaches [36–46], master and quantum kinetic equations [47], reduced electron-density
matrix approaches [48], and non-adiabatic dynamics from lowest order expansions of the
density matrix of the coupled electron–ion system [49]. Another model including dissipation
within a semiclassical treatment of the atomic motion has also been developed [50]. More
recently, approaches based on non-equilibrium statistical physics [51–54] have been used to
study the effects of electron–vibration coupling in model systems [55–58] and in more realistic
atomic and molecular wires [59–66].

In this paper, we present an alternative approach to treat exactly the coupling between
an injected electron and either extended or localized molecular vibrations. In this approach,
both fermionic and bosonic subsystems are treated on the quantum level. The transport
properties of the corresponding molecular nanowires are obtained by means of a multi-channel
inelastic scattering technique (section 2). The method is suited for both small and extended
molecular systems. The basic principles of the multi-channel inelastic scattering technique
are briefly described in section 2. The most important results are given in this section in
order to show the connections between the multi-channel inelastic scattering technique and
other methods that are useful in particular cases. The connection between the different
approaches and the validity of the approximations used is discussed in section 3. Then in
section 4 we show numerically how the energy dependence of the lead self-energy plays an
important role in the transmission and we also study a special case for which artificial side-
band peaks appear in the transmission. In section 4, we also study the dynamical effects of
the polaron shift and we show the different regions of parameter space where the polaron shift
effects may (or may not) be safely neglected. As a practical implementation of the technique,
we consider in section 5 the effects of the temperature on the conductance properties for a
model system in relation to recent experiments performed on conjugated molecular wires in
breakjunctions [5]. Finally, we conclude and briefly discuss the future developments of the
present work (section 6).
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2. The physical model

The model involves the delocalized electronic states of the molecule which simultaneously
carry current through the junction and interact with the eigenmodes of vibration of the
molecule. In the case of conjugated molecules these states are predominantly derived from
the π orbitals. However, the method can deal equally with other types of states, and there are
no restrictions on the geometry or dimensionality of the problem. The reference Hamiltonian
H0 for the isolated molecule is

H0 = Hel +
∑

λ

ωλa†
λaλ (1)

where Hel is the purely electronic Hamiltonian and λ labels the eigenmodes of vibration
of the isolated molecule in its equilibrium (generally neutral) charge state; a†

λ creates (aλ

annihilates) a quantum of energy ωλ in mode λ. The molecular vibrations are assumed to be
approximately harmonic. The electronic Hamiltonian Hel may, in principle, contain electron–
electron interactions.

The fundamental approximation in the following is to consider the scattering of single
electrons or holes from the molecule. This assumption is expected to be reasonable when
the interval between carrier transmission events is much greater than the transit time through
the molecule [41], and when the applied bias does not cause significant fluctuations in the
occupancy of the molecular eigenstates (i.e. one charge state of the molecule dominates during
the transport process).

For electron transport, if the equilibrium charge state contains N electrons and |0, N〉 is the
N-electron ground state, we construct an electronic basis |i, N +1〉 = c†

i |0, N〉 where the {c†
i }

create an electron in a sufficiently complete set of orbitals (for example, in all the low-lying π -
states of the molecule). For hole transport, we would use | j, N − 1〉 = c j |0, N〉. The electron
Hamiltonian Hel is then diagonalized (keeping the phonon coordinates fixed, for the moment)
within the restricted (N ± 1)-electron basis to obtain a set of approximate (N ± 1)-electron
eigenstates. Using the corresponding electron creation (c†

n) and annihilation (cn) operators and
the energies εn , we can write

Hel =
∑

n

εnc†
ncn . (2)

The approximate (N ± 1)-electron eigenstates of the full H0 can thus be written as a direct
product of the electronic states and the vibrational states, |n, {nλ}〉 = |n〉 ⊗ |{nλ}〉, where n
labels an electronic eigenstate and the {nλ} are occupation numbers for the vibrational modes:

|n, {nλ}〉 = c†
n

∏

λ

(a†
λ)

nλ

√
nλ!

|0, N〉 ⊗ |{0λ}〉 (3)

for electrons, with an obvious generalization for holes.
The e–ph coupling term Heph is taken to be linear in the phonon displacements and induces

transitions between the electronic states:

Heph =
∑

λ,n,m

γλnm(a†
λ + aλ)c

†
ncm . (4)

The derivation of equation (4) from a linearized tight-binding model of a trans-polyacetylene
chain (the Su–Schrieffer–Heeger model [25]) can be found in [41]. However, the values of
εn , ωλ needed in H0 and of γλnm needed in Heph can be taken from any suitable model of the
molecule (i.e. an isolated molecule or a molecule in contact with clusters representing a part of
the junction).
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To obtain the transport properties, the molecule is connected to two metallic (left L and
right R) leads. As mentioned above, we consider the scattering of a single incoming charge
carrier (electron or hole). The coupling matrix elements between the molecule and the leads are
vL,R respectively. Since we do not wish to focus only on the properties of the leads, the simplest
possible model is considered, i.e. one-dimensional semi-infinite chains with on-site energy εL,R

and hopping integrals βL,R between nearest neighbours. However, a generalization to a more
realistic coupling of the molecule to the leads is straightforward. In the next section, we will
show results obtained for different models for the leads which go beyond the one-dimensional
semi-infinite chain.

The transport is assumed to be purely elastic within the leads themselves; dissipation of
hot electrons occurs only in remote reservoirs, as in the standard Landauer picture for electron
transport. The scattering states |�〉 for a single incoming carrier are then expanded inside the
molecule onto the eigenstates |n, {nλ}〉 of H0. The single added carrier can be anywhere in the
system and interacts with lattice vibrations only when inside the molecule. The problem is then
solved by mapping the many-body problem onto a single-electron one with many scattering
channels [37–39, 41]; each channel represents a process by which the electron might exchange
energy with the vibration modes.

For an initial vibration mode distribution b ≡ {mλ} before scattering and an incoming
electron from the left, the outgoing channels in the left and right leads are associated with
energy-dependent reflection coefficients rab and transmission coefficients tab, where a ≡ {nλ}
is the final mode distribution after scattering. In the leads, the scattering states are propagating
waves with amplitudes rab (reflection) and tab (transmission), and wavevectors kL

b and kL,R
a

corresponding to the initial (εin) and final (εfin) electronic energies. By projecting out the leads,
one works in the molecular subspace to obtain the scattering state |�〉 by solving
[
ω − H0 − Heph − �r

L(ω) − �r
R(ω)

] |�(ω)〉 ≡ Gr(ω)−1|�(ω)〉 = |sb(ω)〉. (5)

Here ω is the conserved total energy:

ω = εin +
∑

λ

mλωλ = εfin +
∑

λ

nλωλ. (6)

The source term |sb(ω)〉 is fixed by the incoming boundary conditions, while �r
L,R(ω) are the

electron self-energies arising from the coupling of the molecule to the leads [41]. Note that
since the lead properties appear in the form of a self-energy, it is easy to introduce any more
realistic model for the contacts and the electrodes via these self-energies.

The components of the scattering states |�〉 give the matrix elements of the retarded
Green’s function Gr. In practice, the linear system |�〉 = Gr|s〉 is solved for a finite-size
molecular subspace, by truncating the occupation number above a maximum nmax

λ in each
mode. This is physically reasonable because the injected charge cannot populate infinitely
many excitations. From the solution of equation (5), the expectation value of an operator A is
calculated as

〈A〉 =
∑

b

Wph
b (T )〈�|A|�〉, (7)

where Wph
b (T ) is the statistical weight of the initial distribution b ≡ {mλ} of vibration modes

λ at temperature T .
The transmission probability Tab(ω) is given from the square of the coefficients tab with

the usual ratio of the electron velocities in the outgoing and incoming channels. In our model,
the transmission probability Tab is obtained as [36, 41–44]

Tab(εfin, εin) = 4
v2

L

βL
sin kL

b (εin)
v2

R

βR
sin k R

a (εfin)|〈i = N |Gr
ab(ω)|i = 1〉|2, (8)
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where 〈N |Gr
ab(ω)|1〉 is the matrix element of the Green’s function Gr taken between the left

side (i = 1) and the right side (i = N) of the molecule and the vibration distributions before
(b) and after (a) scattering. The factors 	L,R(ω) = 2v2

L,R/βL,R sin kL,R
b,a (ω) are related to the

imaginary parts of the retarded self-energies �r
L,R.

It is interesting to note that the sum of the different contributions
∑

a,b Wph
b (T )Tab is

related to the expression of the generalized transmission Tr[	LGa	RGr] which is usually
derived for non-interacting systems. The derivation of a Landauer-like inelastic transmission
for interacting systems has been recently given in [67], where it is argued that the Landauer
picture is still valid in the presence of interaction as long as multi-particle processes can be
neglected.

Finally, two important notes are in order. First, the procedure described above solves the
problem non-perturbatively in the e–ph interaction. Second, the method has been described for
the case where the channel structure of the leads is generated only by the vibrational excitations
of the molecule. It is however straightforward to generalize it to the cases of multiple spatial
channels in the leads.

3. Connection to other approaches: transmission versus Green’s functions

In this section, we show analytically how the multi-channel scattering technique described in
the previous section is related to other Green’s function methods. The most important results are
given in the following subsections while, for clarity, we have compiled the detailed derivations
in the appendices.

We also introduce further simplifications, which permit us to keep a simple formalism
without losing its generality or affecting the main physical results.

3.1. The single-particle approximation

Let us first assume that the left and right leads are identical and that the molecule’s ends are
coupled to the leads via energy-independent hopping integrals. Then, the self-energies �r

R(ω)

and �r
L(ω) (and their imaginary parts 	L,R) are proportional to each other. The current through

the molecular junction is given by (see appendix A)

J = −2e

h

∫
dω ( fL(ω) − fR(ω)) Im Tr{	(ω)Gr(ω)}, (9)

where fL,R is the Fermi distribution of the left and right lead respectively, Gr is the retarded
Green’s function of the molecule and 	 = 	L	R/(	L + 	R). Gr includes the self-energies
arising from the coupling to the leads and from the e–ph interaction.

Let us further assume that the molecular Hamiltonian H = H0 + Heph is simplified to one
electronic level ε0 coupled to a single vibration mode of frequency ω0 via a coupling constant
γ0 (i.e. the single-site–single-mode SSSM model). The SSSM Hamiltonian is then

H = H0 + Heph = ε0c†
0c0 + ω0a†

0a0 + γ0(a
†
0 + a0)c

†
0c0. (10)

Within the SSSM model, the trace in equation (9) runs over the vibration harmonic states
|χn〉 associated with the creation a†

0 (annihilation a0) operator of the vibration mode ω0:

Tr{	(ω)Gr(ω)} =
∑

n

Wph
n (T )〈χn|	Gr|χn〉, (11)

where the phonon statistical weight is given by Wph
n (T ) = (1 − e−ω0/kT )e−nω0/kT .
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When the e–ph coupling occurs only inside the molecule, 	 conserves the phonon energy
and occupation, and

Tr{	Gr} =
∑

n

Wph
n (T )〈χn|	|χn〉〈χn |Gr|χn〉. (12)

In the limit of low temperatures (ω0 � kT ), the properties are determined only by the phonon
ground-state |χ0〉 (Wph

n = 0 for n > 0) and Tr{	Gr} = 	(ω)〈χ0|Gr(ω)|χ0〉.1
Furthermore, within the SSSM model, Gr is the inverse of a tridiagonal matrix R in the

subspace of the harmonic vibrational states |χn〉 with non-zero matrix elements:

Rn,n = ω − ε0 − nω0 − �r
{n}, Rn,n+1 = −√

n + 1 γ0, Rn,n−1 = −√
n γ0. (13)

�{n}(ω) is the self-energy arising from the coupling to both left and right leads. The index
n corresponds to a different transport channel containing n excitations of the vibration mode.
�{n} is calculated by taking into account the conserved-energy relation equation (6) and has the
following property [41]: �{n}(ω) = �{0}(ω − nω0).

In the limit of low temperatures, the conserved-energy relation equation (6) reduces to
ω = εin = εfin + nω0 and the only important matrix element Gr

00 = 〈χ0|Gr|χ0〉 can be written
as a continued fraction:

Gr
00(ω)

=




ω − ε0 − �r

{0} − γ 2
0

ω − ε0 − ω0 − �r
{1} − 2γ 2

0

ω − ε0 − 2ω0 − �r
{2} − 3γ 2

0
ω−ε0−3ω0−�r{3}−···





−1

.

(14)

The imaginary part of Gr
00 is obtained from the sum of different terms:

Im Gr
00(ω) = |Gr

00(ω)|2 Im

{
�{0}(ω) + γ 2

0

ω − ε0 − ω0 − �r
{1}(ω) − · · ·

}
. (15)

It can be shown that the imaginary part of Gr
00 is in fact related to the other non-diagonal

elements 〈χn |Gr|χ0〉 of Gr in the following manner:

Im〈χ0|Gr|χ0〉 = Im �r
{0} |〈χ0|Gr|χ0〉|2 + Im �r

{1} |〈χ1|Gr|χ0〉|2
+ Im �r

{2}|〈χ2|Gr|χ0〉|2 + · · · . (16)

This is an important result which allows us to relate Green’s function approaches to
Landauer-like transmission approaches. Indeed, by introducing equation (16) in the current
formula equation (9), the current J is then obtained as the sum of the elastic Tbb(ε, ε) and
inelastic Tab(ε

′, ε) transmission probabilities defined in section 2. The transmissions Tab are
given by equation (8) and evaluated for the SSSM model where the vibration is initially in the
ground state (b ≡ |χ0〉) and in the nth excited state (a ≡ |χn〉) after scattering. The detailed
derivation of the series expansion of the current in terms of transmission is given at the end
of appendix A. A similar series expansion of the current has also recently been obtained by a
Landauer-like approach for interacting systems [67].

1 In terms of scattering, the vibration mode is initially in the nth (excited) state and the injected electron scatters out
elastically in the same nth channel and inelastically in the (n + m)th channel by emission of m phonons and in the
(n − m)th channel by phonon absorption. At zero temperature only the term n = 0 matters and only phonon emission
processes are available.
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For finite temperature T , the current is calculated from all the diagonal elements
〈χn|Gr|χn〉 with the appropriate statistical weight Wph

n (T ) for the nth excitation of the vibration
mode. Each matrix element 〈χn|	|χn〉 Im〈χn|Gr|χn〉 is then related to the sum over a ≡ |χm〉
of the transmission coefficients Tab. Another series expansion of the current is obtained as
described above. However, here one starts with different initial thermal distributions b ≡ |χn〉
of the vibration.

Finally, let us note that although the connection between the multi-channel scattering
technique and conventional Green’s function approach has been demonstrated only for the
SSSM model, it can be generalized to the cases of many electronic levels coupled to many
vibration modes, equations (1)–(4). In these cases, the matrix R which defines Gr is tridiagonal
by blocks (the diagonal blocks being associated with the different electronic levels and
phonon replica, the off-diagonal with the e–ph coupling matrix γλnm). The matrix element
〈{0λ}|Gr|{0λ}〉 equivalent to equation (14) can then be written as a matrix continued fraction in
the corresponding subspace. The same reasoning as above can be applied to the derivation of
the current in terms of elastic and inelastic transmission probabilities Tab for all temperatures.

3.2. The wide-band approximation

In this section, we show how the multi-channel scattering technique is related to the work of
Wingreen et al [68] via equation (16). For this, we consider the wide-band approximation for
the leads. For the energy range considered, the lead densities of states are relatively flat and
featureless and the lead self-energies become independent of the energy and of the transport
channel: �{n}(ω) ≡ −i	 = −i(	L+	R)/2 with 	 > 0. It is sometimes convenient to consider
such an approximation because it simplifies the subtleties of parameter renormalization which
appear when one introduces the unitary transformation U = exp g(a0 − a†

0) with g = γ0/ω0

that diagonalizes the SSSM Hamiltonian (see appendix B and discussion therein).
By applying the unitary transformation U to the SSSM Hamiltonian, Gr is the inverse of

the diagonal matrix Rl,l = ω − (ε0 − g2ω0) − lω0 + i	 within the space of the basis set
|χ̃n〉 = U |χn〉 corresponding to the harmonic states of the displaced vibration mode.

In the wide-band approximation, the imaginary part of Gr
00 in equation (16) simply

becomes Im Gr
00(ω) = ∑

n −	|〈χn|Gr|χ0〉|2. By introducing the basis set |χ̃n〉, one gets

Im Gr
00(ω) = −	

∑

n

∣∣∣∣∣
∑

l

〈χn|χ̃l〉 1

ω − (ε0 − g2ω0) − lω0 + i	
〈χ̃l |χ0〉

∣∣∣∣∣

2

. (17)

Using the expressions for the overlaps between the harmonic states |χn〉 and the displaced
harmonic states |χ̃n〉, one finds that (see appendix B)

Im Gr
00(ω) = −	e−2g2

∞∑

n=0

g2n

n!
∣∣∣∣

n∑

j=0

(−1) j

×
(

n
j

) ∞∑

l=0

g2l

l!
1

ω − (ε0 − g2ω0) − ( j + l)ω0 + i	

∣∣∣∣
2

. (18)

Equation (18) is the same result as obtained by Wingreen et al in [68] where the authors
derived the effective transmission from a two-particle Green’s function approach for a single
electronic level coupled to a single vibration mode.

3.3. The non-equilibrium Green’s function approaches

In this section, we show the relationship between the multi-channel scattering technique and
other approaches based on non-equilibrium Green’s functions [54, 56, 57, 59, 61, 62].
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First of all, the retarded Green’s function Gr given in equation (14) can be rewritten in a
more compact form:

Gr(ω) = [ gr
0(ω)−1 − �r

leads(ω) − �r
eph(ω)]−1. (19)

In this expression Gr includes the retarded self-energies arising from the coupling of the
molecule to the leads (�r

leads = �r
{0}) and from the interaction between the electron and the

vibration (�r
eph), and gr

0 is the retarded Green’s function of the isolated molecule in the absence
of e–ph coupling.

To the lowest order in the e–ph coupling, the self-energy �r
eph is given by �

r,(1)

eph (ω) =
γ 2

0 Gr(ω − ω0). The detailed derivation and the discussion of such a result is given in
appendix C. Now we show how this result is related to non-equilibrium Green’s function
techniques.

In a many-body non-equilibrium approach, the self-energies arising from the interaction
between particles are obtained from a diagrammatic perturbation expansion of the interaction
and by applying the rules for the time ordering and for the evaluation of products of double-
timed operators on the Keldysh contour [52].

For a coupled e–ph system, one should in principle take into account all processes to all
orders of the interaction to calculate self-consistently the different electron Green’s functions
dressed by the phonons as well as the different phonon Green’s functions dressed by the
electrons. This is a tremendous task to achieve for realistic systems, and it has been done almost
exactly only for model systems and within some approximations for atomic or molecular wires.
Recent studies based on such non-equilibrium many-body techniques have been performed
by using the so-called self-consistent Born approximation [57, 59, 61, 62]. Within this
approximation, the retarded electron self-energy due to the e–ph coupling is obtained as a
sum of three contributions �r

eph = �r
eph,rr + �r

eph,>r + �r
eph,r> where each contribution has the

following functional form:

�r
eph,XY (ω) = ±i γ 2

0

∫
dω′

2π
DX (ω − ω′) GY (ω′). (20)

The sub/superscript X, Y represents a different kind (retarded r , greater >) of Green’s functions
for electrons (GY ) and phonons (DX ).

We now analyse how these contributions are related to the self-energy �
r,(1)
eph derived in

appendix C. For this, we consider that the phonon Green’s functions are given by the undressed
phonon propagator D0(ω) for which the Keldysh greater component is

D>
0 (ω) = −i2π(N(ω)δ(ω + ω0) + (N(ω) + 1) δ(ω − ω0)), (21)

N(ω) being the Bose–Einstein distribution function for the vibration mode at temperature T
(within the SSSM model, N(ω0) = ∑

n nWph
n (T )). Furthermore, we concentrate on the limit

of low temperatures for which simplifications arise because then N(ω) = 0.
By using the principle of causality and the analytic properties of Gr in the complex plane,

it can be shown that the contribution

�r
eph,rr(ω) = −iγ 2

0

∫
dω′

2π
Dr

0(ω − ω′) Gr(ω′) (22)

to the e–ph self-energy vanishes2. The second contribution to the self-energy is

�r
eph,>r(ω) = iγ 2

0

∫
dω′

2π
D>

0 (ω − ω′) Gr(ω′). (23)

2 This is true for systems with electron–hole symmetry and also for the other cases when the systems are not too far
from equilibrium.
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At zero temperature, this self-energy is exactly the self-energy �
r,(1)

eph = γ 2
0 Gr(ω − ω0) derived

in appendix C for the lowest order in the e–ph coupling.
The last contribution to the self-energy is

�r
eph,r>(ω) = iγ 2

0

∫
dω′

2π
(Dr

0(ω
′) − Dr

0(ω = 0))G>(ω − ω′). (24)

It involves the greater electron Green’s function G> which provides information about the non-
equilibrium density of unoccupied states of the molecule. These states become partially filled
when the current flows through the molecule. G> is related to the corresponding self-energy
�> = �>

L + �>
R + �>

eph and to the retarded and advanced Green’s functions Gr,a via the
kinetic equation G>(ω) = Gr(ω)�>(ω)Ga(ω). Without entering into a lengthy explanation,
the terms in equation (24) involving �>

eph in G> are intrinsically of higher order in O[γ 2
0 ] than

�
r,(1)

eph . They become negligible for weak e–ph coupling. The other terms involving �>
L,R in

G> are important. However, their contributions are small when the electronic level coupled to
the vibration is off-resonance with the Fermi levels of the leads (in the limit of zero to small
applied bias). This is usually the case for molecules having a substantial HOMO–LUMO gap
and when the leads’ Fermi levels are pinned inside this gap.

All the different non-equilibrium contributions to the e–ph self-energies are not yet
properly included in the present form of the multichannel scattering technique. However, one
of them (�r

eph,>r) is already included and to a higher order in O[γ 2
0 ] than the self-energy �

r,(1)
eph

obtained from the self-consistent Born approximation. This is very important when polaronic
effects dominate the transport properties (see appendix C). Furthermore, as mentioned above,
the other contributions (�r

eph,r> and �r
eph,rr) are negligible in the limit of non-resonant transport

and not too far from equilibrium.

4. Transmission versus lead self-energy and dynamical polaron shift

Now that we have shown analytically how the multi-channel scattering technique is related to
other Green’s function approaches, we present numerical calculations for the different models
derived in sections 2, 3.1 and 3.2. In particular, we show how different models for the lead self-
energy (wide-band approximation or energy dependent self-energy) affect the transmission.
We also study an important physical effect which is neglected in the wide-band approximation,
namely the dynamical polaron shift. We also show the different regions of parameter space
where the polaron shift is important or not.

4.1. The dependence of the transmission on the lead self-energy

Figure 1 shows the effective transmission Teff(ω) = −	(ω) Im Gr
00(ω) obtained for the

different models studied in the previous section. The different corresponding expressions for
Gr

00(ω) are given by equations (14), (18) and (B.10). The upper part of figure 1 shows, as
expected, that in the wide-band approximation the transmissions obtained from equations (18)
and (B.10) are strictly equivalent. However, the transmission calculated from equation (14)
is different because it takes into account the energy dependence of the lead self-energy. One
obtains small shifts in the transmission peaks because Re �r

{n}(ω) 
= 0 in equation (14), in
contrast to the wide-band approximation, and the transmission is reduced at high energies
because Im �r

{n}(ω) has a finite energy support; i.e., for large ω or large n, one has Im �r
{n}(ω) =

Im �r
{0}(ω − nω0) = 0.
Furthermore, the overall shape of the transmission is strongly dependent on the model

taken for the self-energy �r
{n}(ω) (i.e. for the leads and their contacts to the molecule). The
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Figure 1. Effective transmission Teff(ω) = −	(ω) Im G r
00(ω) calculated for the SSSM model.

Upper panel, Im G r
00(ω) obtained from equation (14) (solid line), from equation (18) (dashed line),

from equation (B.10) (◦). For the solid line, the lead self-energy �r{0}(ω) is shown in the inset of
figure C.1. For the wide-band approximation (dashed line and ◦), one takes 	 = Im �r{0}(ω = 0).
Lower panel, Teff for different models of leads: thin solid line, model (i) with �r{0} shown in the
inset of figure C.1; dashed line, model (ii) with �r{0} shown in the lower left inset; solid line, model
(ii) with �r{0} shown in the lower right inset (the magnitude of Teff is ×2). The other parameters are
ε0 = 0, ω0 = 0.5, γ0 = 0.3 and v = 0.2 with vL,R = v and βL,R = β = 1.

lower part of figure 1 shows how the features in the transmission are modified by considering
different models for the leads. These models are (i) a semi-infinite tight-binding chain whose
corresponding semi-elliptic surface local density of states generates the self-energy �r

{0}(ω)

shown in the inset of figure C.1, (ii) a Bethe lattice with coordination three (the corresponding
�r

{0} is shown in the lower left inset in figure 1) and (iii) a supported pyramidal tip made of
transition metals [69, 70], whose corresponding self-energy is shown in the lower right inset in
figure 1.

When the leads’ surface density of states is relatively featureless (i.e. for models (i) and
(ii)), the overall shape of the corresponding transmission is mostly conserved. There are
however small differences in the exact position, width and height of the transmission peaks
(see lower panel of figure 1). These differences arise from the different energy behaviour of the
real and imaginary parts of �r

{0} for the different models.
However, when the surface density of states of the leads presents sharp features as obtained

for model (iii) (see imaginary part of �r
{0} in the lower right inset of figure 1), one obtains

new peaks in the transmission. These new peaks do not correspond to spectral features of the
molecule itself. They are solely related to the spectral densities of the leads. Model (iii) might
be an extreme pathological case; however, it shows that, in some energy range, the transmission
conveys only information about the contacts spectral densities. This important result proves
once more that the transport properties of molecular junctions depend not only on the molecule
itself but also (and strongly in some cases) on the contacts between the molecule and the leads.
These effects (contact geometry, dimensionality) have also been considered in other studies on
model systems [71] and on more realistic molecular wires [72] and carbon nanotubes [73].
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Now that we have shown how the transmission depends on the lead self-energies, we focus
on another very important physical effect: the dynamical polaron shift.

4.2. The dynamical polaron shift

When the molecule is charged (permanently or temporarily), the vibration modes reorganize
to accommodate the charge (electron or hole) because charge and vibrations are coupled
together. The polaron shift corresponds to the shift of the nominal electronic levels due to
this reorganization. Obviously any shift of the electronic levels will affect the value of the
transmission at a given energy.

One can already distinguish two limiting cases for the value of the polaron shift. On
one hand, there is no polaron shift in the absence of e–ph coupling and in the limit of
extremely weak e–ph coupling. On the other hand, the full polaron shift is only obtained
for a fully and permanently charged molecule (an isolated molecule) or within the wide-
band approximation [68, 74, 75]. In all the other cases, the energy dependence of the lead
self-energies �r

{n}(ω) plays an important role in the value of the polaron shift since the
imaginary part of �r

{n} is related to the escape rate of the electron from the molecule to the
leads. In other words, when the residence time of the electron in the molecule [41, 76] is
not long enough for the vibrations to fully respond to the presence of this electron, the full
relaxation of the molecule is not obtained and one gets an intermediate value of the polaron
shift.

Within the SSSM model, the full polaron shift is given by E0
p = −γ 2

0 /ω0, and for the
wide-band approximation the nominal electronic level ε0 is lowered by E0

p (see appendix B).
For an energy-dependent lead self-energy, the dynamical polaron shift Ep is shown in figure 2
for different regions of the parameter space. The dynamical polaron shift Ep is calculated
as the energy difference between the position of the lowest energy peak in the total effective
transmission Teff(ω) and ε0.

For weak coupling v = vL = vR of the molecule to the leads (approximately when
v2 < ω0/4), the injected electron stays long enough in the molecule to obtain the full polaron
shift Ep ∼ E0

p . For increasing values of v from weak to strong coupling, the electron residence
time decreases and the vibration frequency might be not large enough to fully respond to the
presence of the electron. One then observes an intermediate polaron shift |Ep| < |E0

p | with
Ep being still proportional to E0

p (see the left panel in figure 2). For strong e–ph coupling and
strong coupling to the leads, Ep is no longer proportional to E0

p (see the left panel in figure 2).
For strong coupling to the leads and for a broad range of e–ph coupling (weak, medium to
strong), the polaron shift has almost vanished when v2 > 3βω0 (see the right panel in figure 2).
It is also interesting to note that an approximate scaling law Ep/E0

p ∼ f (v/
√

βω0) is obtained
for the different regimes considered (i.e. weak to strong e–ph coupling within the adiabatic or
non-adiabatic limit).

The results in figure 2 show the regions of the parameter space where the polaron shift
effect should not be neglected (for example, when the coupling to the leads is weak, or for
large vibration frequencies, it is valid to only consider the full polaron shift [68, 74, 75]) and
the regions where the polaron shift can be safely neglected as in [77]. The effect of the polaron
shift on the transmission might be not too important for quasi-ballistic atomic-size wires or
metallic carbon nanotubes. However, it is very important for semiconducting-like wires, in
which the polaron shift of the electronic-band-edge states can significantly reduce the energy
gap of the system [38, 41].

Finally, to conclude this section, it should be noticed that such dynamical polaron shift
effects cannot be obtained at all from any perturbation treatments of the e–ph coupling [78].



6318 H Ness

0 0.02 0.04 0.06 0.08 0.1

γ0
2/ω0β

-0.1

-0.08

-0.06

-0.04

-0.02

0

v/β=0.05, ω
0
=0.09

v/β=0.20, ω
0
=0.09

v/β=0.23, ω
0
=0.09

E
p
/β

0 0.5 1 1.5 2

v /(βω0)
1/2

0

0.2

0.4

0.6

0.8

1

γ0=0.03, ω0=0.09
γ0=0.02, ω0=0.04
γ0=0.04, ω0=0.05

E
p
 / E

p

0

Figure 2. Dynamical polaron shift Ep for different parameter ranges. Ep is calculated as the
difference between ε0 and the position of the lowest energy peak in Teff(ω) given by equation (14).
The parameters are ε0 = 0, vL,R = v, βL,R = β = 1. Left panel: Ep versus γ0 for different
couplings v to the leads. For weak coupling, the electron stays long enough in the molecule to
obtain a full polaron shift E0

p = −γ 2
0 /ω0. For increasing v, the residence time decreases and one

gets an intermediate polaron shift |Ep| < |E0
p |. For strong e–ph and v couplings, a deviation from

Ep ∝ E0
p is obtained. Right panel: Ep/E0

p versus the coupling v for different values of γ0 and

ω0. For weak coupling (v2 < ω0/4), the full polaron shift is obtained (Ep/E0
p ∼ 1). When v

increases, the electron residence time decreases as well as the polaron shift. The polaron shift has
almost vanished for v2 > 3βω0. A scaling law Ep/E0

p ∼ f (v/
√

βω0) is obtained.

5. Temperature effects on the conductance peaks

In our previous studies on long conjugated molecular wires [42, 41], we have shown that
the vibration modes that are the most strongly coupled to an injected charge carrier are the
longitudinal optic phonon modes. We have also identified the mechanisms of charge injection
and transport in such molecular wires. The transport is associated with the formation and
propagation of polarons in semiconducting molecular wires [41]. More complex mechanisms
arise in the presence of mid-gap states associated with a soliton defect [42]. All these
studies were performed in the low-temperature limit. We now present new results for the
temperature dependence of the conductance through short molecular wires in relation to recent
experiments [5].

In these experiments, performed on polyphenylene-based molecular wires, the transport
properties were measured at room temperature and at very low temperature (T ∼ 30 K) with
a mechanically controlled breakjunction [5]. The conductance curves show a peak just above
the region of very low conductance at small bias. At low temperature, the peak is asymmetric
towards higher energies with a maximum width of ∼125 meV. At room temperature, this peak
has a reduced amplitude and is more symmetric, with a bell-like shape of maximum width of
∼300 meV.

It is clear that such a temperature dependence cannot be explained solely by the broadening
of the Fermi distributions of the electrodes. Such a broadening over kT is not sufficient to
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Figure 3. Total effective transmission Teff(ω) for different temperatures from kT = 0 (dashed line)
to kT = 12.5ω0 (solid line) in steps of �kT/ω0 = 0.625 (thin solid lines). The amplitude of the
spectra decreases with increasing temperature. For very low temperatures, the transmission peak
is asymmetric towards high energy because of the presence of phonon side-bands corresponding
to phonon emission. As the temperature increases (room temperature kT/ω0 ∼ 1.25 and above),
both phonon emission and adsorption processes are available. The transmission peak becomes
more symmetric around ε0 and its amplitude decreases. The parameters for the SSSM model
are ε0/β = 0.5, ω0/β = 0.020, γ0/β = 0.014, v/β = 0.087 with vL,R = v and βL,R = β.
Calculations performed with a maximum vibration occupancy of nmax

ph = 61. Inset: temperature
dependence of the width of the transmission peak.

explain the increase of the width of the conductance peak and is certainly not responsible for
the modifications of the shape of the conductance peak. It is therefore reasonable to assume
that there are some fluctuations inside the junction or at the molecule–lead contacts [65].
Considering the energy scale involved, such fluctuations can be related to low-frequency
vibration modes, which may correspond to the centre of mass or libration vibration modes [65].
It is not straightforward to identify the exact nature of such modes; therefore, we consider a
model system: the SSSM model.

We have performed calculations of the transmission according to the prescriptions given
in section 3 for a broad range of values for the parameters and for the temperature. In the
following, we present the results obtained for a single set of parameters which best fits the
experiments.

Within the SSSM model, the single molecular level is taken to be ε0 = 0.5 eV, which
corresponds to the position of the conductance peak observed in the experiments [5]. This
molecular level is coupled to a low-frequency vibration mode (ω0 ∼ 20 meV in agreement
with recent numerical calculations [65]) via an e–ph coupling constant (γ0 ∼ ω0/2). The
total effective transmission Teff(ω) is calculated as the sum of all the elastic and inelastic
contributions for the different temperatures as described in section 3.1.

Figure 3 shows the transmission Teff calculated for different temperatures ranging from
the low-temperature limit (kT = 0) to the high-temperature limit (kT/ω0 = 12.5). In the
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absence of e–ph coupling, the transmission is simply given by a single Breit–Wigner symmetric
resonance located around ε0 as expected. In the presence of e–ph coupling, the shape of
the resonance is modified by the phonon side-band peaks. For very low temperatures, the
transmission peak is asymmetric towards higher energy. The phonon side-band peaks are
located at energies above ε0 because only phonon emission processes are allowed at low
temperatures. At room temperature and above, both phonon emission and adsorption processes
become possible and the phonon side-band peaks appear for energies above and below the
molecular level ε0. The transmission peak is then broadened and more symmetric around
ε0.3 Furthermore, the amplitude of the transmission peak is also reduced in comparison to
the transmission obtained at T = 0 as observed experimentally.

It is interesting to note that similar lineshapes can be obtained for very low temperature
and very strong e–ph coupling [79]. Such similarities between the lineshape functions for
strong coupling at low temperature (where only phonon emission is possible) and the lineshape
functions for medium to weak coupling at higher temperatures (where both phonon emission
and adsorption are available) is only superficial as pointed out in [52], the physics in the two
different regimes being quite different.

Now, by defining a probability distribution p(ω) from the transmission as p(ω) =
Teff(ω)/

∫
Teff(ω) dω, one can calculate the corresponding different moments. The inset in

figure 3 shows the effective full width of the conductance peak obtained from the second
moment of p(ω). The width of the resonance increases with the temperature, almost linearly
for large temperatures. Such a behaviour can be related to the temperature dependence of the
mean square displacement of a harmonic oscillator.

Furthermore, such numerical results are in qualitative agreement with the temperature
dependence of the width of the conductance peak measured from IETS spectra [21]. Therefore,
one could in principle be able to extract the values of the intrinsic width or of the local effective
temperature from the measurements.

However, it should be noticed that for all the calculations we have performed to obtain
transmission shapes similar to the experiments4 the temperatures used in the calculations are
always larger than the room temperature. This behaviour may be related to a local heating
effect in the molecular junction. Indeed, it is known that the effective temperature of molecular
junctions could be substantially higher than the temperature of the surrounding system [80].
Furthermore, the local environment of the conducting molecule (neglected in the SSSM model)
may also play an important role. Single-molecule junctions, where thermal conduction and
other relaxation processes are limited, will generally exhibit a higher local temperature than a
molecule embedded in a dense monolayer [23].

To conclude this section, it is interesting to note that a few-parameter model such as
the SSSM model provides results that are in qualitative agreement with the conductance
measurements performed in [5]. Therefore, the mechanism described by such a model provides
a plausible explanation of the temperature dependence of the conductance peaks in molecular
junctions. However, further investigations are needed to check the relevance/importance of
other mechanisms such as hot-phonon effects or non-equilibrium fluctuation of the molecular
level population [54, 56, 57].

3 A similar increase of the level broadening has also been obtained in the limit of weak coupling to low-energy acoustic
phonons in the somewhat different context of transport through quantum well [54].
4 Such transmission lineshapes are obtained for a broad range of values for γ0, ω0 and vL,R for which the broadening
of the phonon side-band peaks due to the coupling to the leads is rather large. Each phonon side-band peak m overlaps
with the adjacent broadened phonon side-band peaks m ± 1. Figure 3 shows the results obtained for only one set of all
the calculations.
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6. Conclusion

In this paper, we have described an efficient method based on inelastic scattering to study the
effects of electron–vibration coupling on the transport properties of molecular nanojunctions.
We have briefly recalled the principal ingredients of the multi-channel inelastic scattering
technique. We have also shown how this technique is connected to other approaches based
on the single-particle approximation or two-particle Green’s functions for non-interacting
electrons and on non-equilibrium Green’s functions using lowest-order expansions for the
electron–phonon coupling. Our results corroborate the important idea that the Landauer picture
conductance is transmission probability is still valid in the presence of interaction, as also
recently shown by Imry et al [67].

In this paper, we have also discussed in detail the validity of different approximations used
in the different models. For example, we have shown the effects of the lead self-energy on
the transmission and we have studied another important physical effect, namely the dynamical
polaron shift. We have shown the different regions of parameter space where the polaron shift
effect can be neglected and where it should be retained.

As a practical application of the technique, we have provided a plausible explanation for
the temperature dependence of the width and the shape of conductance peaks in molecular
nanojunctions. The explanation relies on the inelastic and thermal excitation of low-frequency
vibration modes in the junction. The results of the calculations for a model system are in good
agreement with the measurements performed recently on single-molecule nanojunctions [5].

Extensions of the present technique to more realistic systems are under study. Preliminary
calculations have shown the necessity of understanding the features in inelastic electron
tunnelling spectroscopy by going beyond the single-vibration mode analysis [46]. Finally, the
effects of multi-phonon excitations, the validity of perturbative treatments of the e–ph coupling
in molecular wires, and a comparative study of lowest order expansions for the e–ph coupling
in non-equilibrium Green’s functions will be presented in forthcoming papers.

Appendix A. The current from the Green’s functions

Let us consider a scattering region (a dot or a molecule which is described by a complete set of
single-particle states and which can include interactions between particles) that is connected to
two (left L and right R) leads described by non-interacting Fermi seas at their own equilibrium
(characterized by the Fermi distributions fL and fR). The current JL flowing from the left
lead into the central region is expressed in terms of three Green’s functions (the retarded
Gr, advanced Ga and lesser G< Green’s functions) of the interacting central region. In the
stationary regime and for non-explicitly time-dependent problems, the current JL is given
by [81]

JL = ie

h

∫
dω Tr

{
fL(ω) 	L(ω)[Gr(ω) − Ga(ω)] + 	L(ω) G<(ω)

}
, (A.1)

where the trace runs on the single-particle states of the central region and 	L is related to the
imaginary part of the retarded (advanced) self-energy �

r(a)
L arising from the coupling of the

central region to the left lead. These self-energies are included in the calculation of Green’s
functions Gr(a) via usual Dyson-like equations. Other self-energies arising from other kinds of
interaction should also be included in Gr,a,<.

An expression similar to equation (A.1) is obtained for the current JR flowing from the
right lead into the central region by interchanging the subscript L ↔ R in equation (A.1). For
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a current conserving system JL = −JR and one can derive a symmetrized expression for the
current by calculating J = 1

2 (JL − JR) [81].
For identical L and R leads, the local density of states ρL,R(ω) at the sites connected to the

central region (via the hopping integrals VL,R) are identical. For a single-site connection and for
energy-independent hopping integrals, the lead spectral functions 	L,R ∝ V †

L,RρL,R(ω)VL,R are
simply proportional to each other. In general when the coupling of the central region to the leads
is given by a set of energy-independent hopping integrals, there always exists a transformation
that links 	L to 	R [78]. In the following, we simply assume that 	L(ω) = α	R(ω).

The current J can be evaluated from any linear combinations of JL and JR [54, 81] such
as J = a

a+b JL − b
a+b JR where a, b ∈ � and a + b 
= 0. By taking a = 1, b = α one finds

J = ie

h

∫
dω Tr

{
	L(ω) [Gr(ω) − Ga(ω)]( fL(ω) − fR(ω))

1

1 + α

}

= ie

h

∫
dω Tr

{
	R(ω) [Gr(ω) − Ga(ω)]( fL(ω) − fR(ω))

α

1 + α

}
. (A.2)

Therefore, the current through the junction is

J = −2e

h

∫
dω ( fL(ω) − fR(ω)) Im Tr{	(ω) Gr(ω)}, (A.3)

where we used Gr − Ga = 2i Im Gr and

	(ω) = 	L(ω)
1

1 + α
= 	R(ω)

1

1 + 1/α
= 	L(ω)	R(ω′)

	L(ω′) + 	R(ω′)
. (A.4)

It is important to note that the energies ω and ω′ in the above expression for 	(ω) are
not necessarily equal to each other. This is an important result which is used to link the series
expansion of the Green’s function Gr to the transmission probabilities Tab(ω

′, ω) in section 3.1.
Indeed, for the SSSM model at low temperature, one has

Im Tr{	(ω) Gr(ω)} = 	(ω) Im〈χ0|Gr|χ0〉 = 	(ω)
∑

n

Im �r
{n}|〈χn|Gr|χ0〉|2

= 	L(ω)
∑

n

	R(ω − nω0)|〈χn|Gr|χ0〉|2, (A.5)

where we used the properties of the lead self-energies Im �r
{n}(ω) = (	R + 	L)(ω − nω0).

The last line in equation (A.5) is simply the sum of the transmission probabilities Tab(ω
′, ω) =

	L(ω)	R(ω′)|〈Gr
ab〉|2 given by equation (8) with a ≡ |χn〉, b ≡ |χ0〉 and ω′ = ω − nω0.

Appendix B. The wide-band approximation and derivation of equation (18)

Let us start with equation (17)

Im Gr
00(ω) = −	

∑

n

∣∣∣∣∣

∞∑

l=0

〈χn|χ̃l〉 1

ω − ε̃0 − lω0 + i	
〈χ̃l |χ0〉

∣∣∣∣∣

2

, (B.1)

where |χ̃n〉 = U |χn〉 are the states of the displaced harmonic oscillator and U =
exp g(a0 − a†

0) with g = γ0/ω0. ε̃0 = ε0 − g2ω0 is the electronic level displaced by the
full polaron shift −g2ω0.

It should be noted that the transformation U diagonalizes only the isolated molecule
SSSM Hamiltonian. In the derivation of the full Green’s functions, one should take into
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account the effects of U on the lead self-energies. In the wide-band approximation, such
renormalization effects are neglected. The lead self-energies entering the Green’s functions are
complex numbers −i	 corresponding to a homogeneous broadening of the Green’s functions’
poles.

One can calculate the overlap between the harmonic states |χn〉 and the displaced harmonic
states |χ̃l〉. The lowest n terms are

〈χ0|χ̃l〉 = gl

√
l!e−g2/2,

〈χ1|χ̃l〉 = −g〈χ0|χ̃l〉 + √
l〈χ0|χ̃l−1〉 = 〈χ0|χ̃l〉 g (−1 + l/g2),

〈χ2|χ̃l〉 = 1√
2

(
g2〈χ0|χ̃l〉 − 2g

√
l 〈χ0|χ̃l−1〉 − √

l(l − 1) 〈χ0|χ̃l−2〉
)

= 〈χ0|χ̃l〉 g2

√
2
(1 − 2l/g2 + l(l − 1)/g4),

and

〈χn|χ̃l〉 = 〈χ0|χ̃l〉 gn

√
n!

n∑

k=0

(−1)k+l 1

k!
n!

(n − k)!
l!

(l − k)!g−2k for n < l. (B.2)

More generally, the overlaps 〈χm |χ̃n〉 for any n, m are given by [82]

〈χm |χ̃n〉 = √
n! m! e−g2/2 gn+m(−1)n

min(n,m)∑

k=0

(−1)k (g2)−k

k!(n − k)!(m − k)! . (B.3)

Using the definition of the associated Laguerre polynomials Lm−n
n (x) [83], the expression

for the overlap 〈χm|χ̃n〉 can be rewritten as follows [84]:

〈χm |χ̃n〉 =
√

q<!
q>!e−g2/2gq>−q< Lq>−q<

q<
(g2) (sgn(m − n))q>−q< , (B.4)

where q< = min(n, m) and q> = max(n, m).
Equation (B.4) can also be obtained by working with the real space representation of the

harmonic states 〈x |χn〉 given in terms of Hermite polynomials Hn(u). For the bare harmonic
states, one has

〈x |χn〉 = χn(x) =
(

β2

π

)1/4
1√
n!2n

e−β2 x2/2 Hn(βx), (B.5)

and for the displaced oscillator states 〈x |χ̃n〉 = χ̃n(x) = χn(x − xg) with 1
2β

2x2
g = g2. One

recovers equation (B.4) by using the integral for Gaussian-weighted overlaps between Hermite
polynomials [83]:
∫

dx e−x2
Hm(x + y)Hn(x + z) = 2nπ1/2m!zn−m Ln−m

m (−2yz) for m � n. (B.6)

From equation (B.3) or equation (B.4), the different terms n in the square modulus of
equation (B.1) are (for n > 0)

n = 1 :
∞∑

l=0

〈χ1|χ̃l〉 1

ω − ε̃0 − lω0 + i	
〈χ̃l |χ0〉

= ge−g2
∞∑

l=0

g2l

l!
(

1

ω − ε̃0 − lω0 + i	
− 1

ω − ε̃0 − (l + 1)ω0 + i	

)
; (B.7)
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n = 2 :
∞∑

l=0

〈χ2|χ̃l〉 1

ω − ε̃0 − lω0 + i	
〈χ̃l |χ0〉

= 1√
2

∞∑

l=0

g2 |〈χ0|χ̃l〉|2
ω − ε̃0 − lω0 + i	

− 1√
2

∞∑

l=1

2g
√

l
〈χ0|χ̃l−1〉〈χ̃l |χ0〉

ω − ε̃0 − lω0 + i	

+ 1√
2

∞∑

l=2

√
l(l − 1)

〈χ0|χ̃l−2〉〈χ̃l |χ0〉
ω − ε̃0 − lω0 + i	

= g2

√
2

e−g2
∞∑

l=0

g2l

l!
(

1

ω − ε̃0 − lω0 + i	

)
− 2

g2l

l!
(

1

ω − ε̃0 − (l + 1)ω0 + i	

)

+ g2l

l!
(

1

ω − ε̃0 − (l + 2)ω0 + i	

)
. (B.8)

By summing up and reorganizing all the terms, one obtains the final result, equation (18):

Im Gr
00(ω) = −	e−2g2

∞∑

n=0

g2n

n!

∣∣∣∣∣

n∑

j=0

(−1) j

(
n

j

) ∞∑

l=0

g2l

l!
1

ω − ε̃0 − ( j + l)ω0 + i	

∣∣∣∣∣

2

. (B.9)

To conclude this appendix, let us note that one could have worked in the subspace of the
displaced harmonic oscillators to determine Im Gr

00(ω) as follows [85]:

Im Gr
00(ω) = Im〈χ0|

∑

n

|χ̃n〉〈χ̃n |
ω − ε̃0 − nω0 + i	

|χ0〉

=
∑

n

|〈χ̃n|χ0〉|2 −	

(ω − ε̃0 − nω0)2 + 	2
= −	 e−g2

∑

n

g2n/n!
(ω − ε̃0 − nω0)2 + 	2

.

(B.10)

Equation (B.10) is simpler but strictly equivalent to equation (B.9) as shown in figure 1.
One should note that the equivalence between the different methods (the multi-channel

scattering technique, the model derived by Wingreen et al [68] and equation (B.10)) is only
valid in the wide-band approximation. Within this approximation, one can solve the transport
problem by first applying the unitary transformation U to the isolated molecule and then by
connecting the molecule to the leads; i.e., one considers that there is no effect of applying such
a canonical transformation on the properties of the leads and of the matrix elements that couple
the molecule to the leads. It is then easier to apply the techniques of Keldysh contour and
non-equilibrium Green’s functions to the SSSM model, as done for example in [75].

However in the most general cases, the wide-band limit is a quite poor approximation. As
shown in figure 1, the energy dependence of the lead self-energies is very important, especially
when the contacts between the molecule and the leads are made via some kind of clusters whose
local density of states presents strong features on a small energy scale around the Fermi level.
In such cases, one has to solve the problem by considering the correct energy dependence of
the lead self-energies and the associated effects when one changes from one basis set to the
other (i.e. swapping between the basis set |χn〉 and |χ̃n〉 in the SSSM model).

Furthermore, by working within the wide-band approximation, one works in a limited
region of the parameter space where the interesting physics of the dynamical polaron shift is
omitted as described in section 3.1. Indeed, within the wide-band approximation, the electronic
level is shifted by the full polaron shift ε̃0 = ε0 − g2ω0 for all energies considered.



Quantum inelastic e–ph scattering in molecular wires 6325

-2 -1 0 1 2
ω/β

-0.4

-0.2

0

0.2

0.4

Re Σ
eph

(ω)

-2 -1 0 1 2
ω/β

-0.8

-0.6

-0.4

-0.2

0

Im Σ
eph

(ω)

-3 -2 -1 0 1 2 3
ω/β

-0.04

-0.02

0

0.02

0.04

  Re Σ
- Im Σ

Figure C.1. Real (left panel) and imaginary (right panel) parts of the self-energy �r
eph(ω) calculated

from equation (C.8) (dashed lines) and from the exact expression equation (C.2) (solid lines). The
real and imaginary parts of the lead self-energy �r{0}(ω) are given in the inset. The parameters
for the SSSM model are ε0/β = 0, ω0/β = 0.5, γ0/β = 0.3, v/β = 0.2 with vL,R = v and
βL,R = β = 1. Calculations are performed with a maximum vibration occupancy of nmax

ph = 17.

Appendix C. Derivation of the self-energy �eph(ω)

The retarded electronic Green’s function in equation (14) can be rewritten in a more compact
form as follows:

Gr(ω) = [ ω − ε0 − �r
{0}(ω) − �r

eph(ω)]−1, (C.1)

where we have introduced the self-energy �r
eph(ω) due to the e–ph interaction. From

equation (14), this self-energy is expressed as the following continued fraction:

�r
eph(ω) = γ 2

0

Gr
0(ω − ω0)−1 − 2 γ 2

0

Gr
0(ω − 2ω0)−1 − 3 γ 2

0

Gr
0(ω − 3ω0)−1 − · · ·

(C.2)

where Gr
0(ω) is the retarded Green’s function of the molecule connected to the leads in the

absence of e–ph interaction Gr
0(ω) = [ω − ε0 − �r

{0}(ω)]−1.
Note that by using the properties of the lead self-energies, �r

{n}(ω) = �r
{0}(ω − nω0), one

has Gr
0(ω − nω0)

−1 = ω − ε0 − nω0 − �r
{0}(ω − nω0) = ω − ε0 − nω0 − �r

{n}(ω).
It can be shown [78] that the continued-fraction expansion of �r

eph can be reformulated as
a series expansion in terms of the powers of the e–ph coupling γ0:

�r
eph(ω) =

∑

n

�
r,(n)
eph (ω,O[γ 2n

0 ]). (C.3)

In such a series expansion, the lowest order term is

�
r,(1)
eph (ω) = γ 2

0 Gr(ω − ω0). (C.4)



6326 H Ness

The self-energy �
r,(1)

eph is related to the e–ph self-energy obtained at low temperature for the
self-consistent Born approximation [57–59, 61, 62].

The higher order terms correspond to multiple phonon excitations [78]. For example, the
term in O[γ 4

0 ] is

�
r,(2)
eph (ω) = γ 4

0 Gr(ω − ω0)Gr(ω − 2ω0)Gr(ω − ω0), (C.5)

higher order terms in O[γ 6
0 ] are

�
r,(3a)

eph (ω) = γ 6
0 Gr(ω − ω0)Gr(ω − 2ω0)Gr(ω − 3ω0)Gr(ω − 2ω0)Gr(ω − ω0), (C.6)

and

�
r,(3b)
eph (ω) = γ 6

0 Gr(ω − ω0)Gr(ω − 2ω0)Gr(ω − ω0)Gr(ω − 2ω0)Gr(ω − ω0). (C.7)

A similar series expansion of the e–ph self-energy can also be obtained by using a linked cluster
expansion approach [86].

In the limit of weak e–ph interaction (γ0 � 1), the leading term of the series is obviously
the lowest-order term �

r,(1)
eph related to the self-consistent Born approximation [57–59, 61, 62].

In the other cases (medium to strong e–ph coupling), the higher-order terms are important
and need to be included in the calculations in order to correctly reproduce the multi-phonon
excitations.

Finally, one should note that by inserting the expression equation (C.4) into the definition
of Gr in equation (C.1) one can expand the e–ph self-energy as

�r
eph(ω) = γ 2

0

Gr
0(ω − ω0)−1 − γ 2

0

Gr
0(ω − 2ω0)−1 − γ 2

0

Gr
0(ω − 3ω0)−1 − · · ·

(C.8)

However, equation (C.8) is not the correct expansion for the e–ph self-energy. The exact
continued-fraction expansion of �r

eph includes a factor n at each level of the expansion as
can be seen in equation (C.2). Such factors arise when applying the creation (annihilation)
phonon operator on the corresponding vibration state |χn−1(n)〉 in a multi-excitation process.
The absence of the factors n generates a wrong self-energy as can be seen in figure C.1.
The positions of the peaks in the real and imaginary parts of the self-energy as well as their
amplitudes are incorrect when one calculates �r

eph with equation (C.8) instead of using the
exact expression equation (C.2).

Such an incorrect energy dependence of the self-energy also generates wrong features
in the corresponding effective transmission. These effects will be analysed in detail in a
forthcoming paper. However, one can already say that the polaron shift observed in the
transmission is not correctly reproduced when one omits the n factors in the self-energy.
Furthermore, the high energy peaks in the effective transmission appear at energies ω = mω0,
which gives wrong energy differences between the first zero-phonon peak and the other phonon
side-band peaks. Such an incorrect transmission lineshape is not obtained when the factors n
are properly included in the continued-fraction expansion equation (C.2).
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[10] Dujardin E, Derycke V, Goffman M F, Lefèvre R and Bourgoin J P 2005 Appl. Phys. Lett. 87 193107
[11] Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruña H D,

McEuen P L and Ralph D C 2002 Nature 417 722
[12] Liang W, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725
[13] Porath D, Bezryadin A, de Vries S and Decker C 2000 Nature 403 635
[14] Endres R G, Cox D L and Singh R R P 2004 Rev. Mod. Phys. 76 195
[15] Xu B, Zhang P, Li X and Tao N 2004 Nano Lett. 4 1105
[16] Hu W, Jiang J, Nakashima H, Luo Y, Kashimura Y, Chen K Q, Shuai Z, Furukawa K, Lu W, Liu Y, Zhu D and

Torimitsu K 2006 Phys. Rev. Lett. 96 027801
[17] Ho W 2002 J. Chem. Phys. 117 11033
[18] Liu N, Pradhan N A and Ho W 2004 J. Chem. Phys. 120 11371
[19] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
[20] Kushmerick J G, Lazorcik J, Patterson C H and Shashidhar R 2004 Nano Lett. 4 639
[21] Wang W, Lee T, Kretzschmar I and Reed M A 2004 Nano Lett. 4 643
[22] Yu L H, Keane Z K, Ciszek J W, Cheng L, Stewart M P, Tour J M and Natelson D 2004 Phys. Rev. Lett.

93 266802
[23] Selzer Y, Cai L, Cabassi M A, Yao Y, Tour J M, Mayer T S and Allara D L 2005 Nano Lett. 5 61
[24] Heeger A J 2001 Rev. Mod. Phys. 73 681
[25] Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781
[26] Persson B N J and Baratoff A 1987 Phys. Rev. Lett. 59 339
[27] Lorente N and Persson M 2000 Phys. Rev. Lett. 85 2997
[28] Lorente N and Persson M 2000 Faraday Discuss. 117 277
[29] Lorente N, Persson M, Lauhon L J and Ho W 2001 Phys. Rev. Lett. 86 2593
[30] Montgomery M J and Todorov T N 2003 J. Phys.: Condens. Matter 15 8781
[31] Montgomery M J, Hoekstra J, Sutton A P and Todorov T N 2003 J. Phys.: Condens. Matter 15 731
[32] Montgomery M J, Todorov T N and Sutton A P 2002 J. Phys.: Condens. Matter 14 5377
[33] Chen Y C, Zwolak M and di Ventra M 2005 Nano Lett. 5 621
[34] Chen Y C, Zwolak M and di Ventra M 2005 Nano Lett. 4 1709
[35] di Ventra M, Chen Y C and Zwolak M 2003 Nano Lett. 3 1691
[36] Sols F 1992 Ann. Phys. 214 386
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